Skip to contents
## 
## clusterProfiler v4.4.1  For help: https://yulab-smu.top/biomedical-knowledge-mining-book/
## 
## If you use clusterProfiler in published research, please cite:
## T Wu, E Hu, S Xu, M Chen, P Guo, Z Dai, T Feng, L Zhou, W Tang, L Zhan, X Fu, S Liu, X Bo, and G Yu. clusterProfiler 4.0: A universal enrichment tool for interpreting omics data. The Innovation. 2021, 2(3):100141
## 
## Attaching package: 'clusterProfiler'
## The following object is masked from 'package:stats':
## 
##     filter
library(org.Hs.eg.db)
## Loading required package: AnnotationDbi
## Loading required package: stats4
## Loading required package: BiocGenerics
## 
## Attaching package: 'BiocGenerics'
## The following objects are masked from 'package:stats':
## 
##     IQR, mad, sd, var, xtabs
## The following objects are masked from 'package:base':
## 
##     anyDuplicated, append, as.data.frame, basename, cbind, colnames,
##     dirname, do.call, duplicated, eval, evalq, Filter, Find, get, grep,
##     grepl, intersect, is.unsorted, lapply, Map, mapply, match, mget,
##     order, paste, pmax, pmax.int, pmin, pmin.int, Position, rank,
##     rbind, Reduce, rownames, sapply, setdiff, sort, table, tapply,
##     union, unique, unsplit, which.max, which.min
## Loading required package: Biobase
## Welcome to Bioconductor
## 
##     Vignettes contain introductory material; view with
##     'browseVignettes()'. To cite Bioconductor, see
##     'citation("Biobase")', and for packages 'citation("pkgname")'.
## Loading required package: IRanges
## Loading required package: S4Vectors
## 
## Attaching package: 'S4Vectors'
## The following object is masked from 'package:clusterProfiler':
## 
##     rename
## The following objects are masked from 'package:base':
## 
##     expand.grid, I, unname
## 
## Attaching package: 'IRanges'
## The following object is masked from 'package:clusterProfiler':
## 
##     slice
## 
## Attaching package: 'AnnotationDbi'
## The following object is masked from 'package:clusterProfiler':
## 
##     select
## 
library(ggplot2)

data(geneList, package="DOSE")
gene <- names(geneList)[abs(geneList) > 2]
gene.df <- bitr(gene, fromType = "ENTREZID",
        toType = c("ENSEMBL", "SYMBOL"),
        OrgDb = org.Hs.eg.db)
## 'select()' returned 1:many mapping between keys and columns
## Warning in bitr(gene, fromType = "ENTREZID", toType = c("ENSEMBL", "SYMBOL"), :
## 0.48% of input gene IDs are fail to map...
head(gene.df)
##   ENTREZID         ENSEMBL SYMBOL
## 1     4312 ENSG00000196611   MMP1
## 2     8318 ENSG00000093009  CDC45
## 3    10874 ENSG00000109255    NMU
## 4    55143 ENSG00000134690  CDCA8
## 5    55388 ENSG00000065328  MCM10
## 6      991 ENSG00000117399  CDC20
ego <- enrichGO(gene          = gene,
                universe      = names(geneList),
                OrgDb         = org.Hs.eg.db,
                ont           = "CC",
                pAdjustMethod = "BH",
                pvalueCutoff  = 0.01,
                qvalueCutoff  = 0.05,
        readable      = TRUE)
head(ego)
##                    ID                              Description GeneRatio
## GO:0005819 GO:0005819                                  spindle    26/201
## GO:0000775 GO:0000775           chromosome, centromeric region    19/201
## GO:0072686 GO:0072686                          mitotic spindle    17/201
## GO:0000779 GO:0000779 condensed chromosome, centromeric region    16/201
## GO:0098687 GO:0098687                       chromosomal region    23/201
## GO:0000776 GO:0000776                              kinetochore    15/201
##              BgRatio       pvalue     p.adjust       qvalue
## GO:0005819 313/11865 1.748161e-11 5.261964e-09 4.802842e-09
## GO:0000775 169/11865 6.340879e-11 6.832630e-09 6.236463e-09
## GO:0072686 131/11865 6.809930e-11 6.832630e-09 6.236463e-09
## GO:0000779 123/11865 2.439813e-10 1.835960e-08 1.675767e-08
## GO:0098687 287/11865 5.709915e-10 3.437369e-08 3.137448e-08
## GO:0000776 115/11865 8.719737e-10 4.374401e-08 3.992722e-08
##                                                                                                                                                               geneID
## GO:0005819 CDCA8/CDC20/KIF23/CENPE/ASPM/DLGAP5/SKA1/NUSAP1/TPX2/TACC3/NEK2/CDK1/MAD2L1/KIF18A/BIRC5/KIF11/TRAT1/TTK/AURKB/PRC1/KIFC1/KIF18B/KIF20A/AURKA/CCNB1/KIF4A
## GO:0000775                                            CDCA8/CENPE/NDC80/TOP2A/HJURP/SKA1/NEK2/CENPM/CENPN/ERCC6L/MAD2L1/KIF18A/CDT1/BIRC5/EZH2/TTK/NCAPG/AURKB/CCNB1
## GO:0072686                                                      KIF23/CENPE/ASPM/SKA1/NUSAP1/TPX2/TACC3/CDK1/MAD2L1/KIF18A/KIF11/TRAT1/AURKB/PRC1/KIFC1/KIF18B/AURKA
## GO:0000779                                                             CENPE/NDC80/HJURP/SKA1/NEK2/CENPM/CENPN/ERCC6L/MAD2L1/KIF18A/CDT1/BIRC5/TTK/NCAPG/AURKB/CCNB1
## GO:0098687                   CDCA8/CENPE/NDC80/TOP2A/HJURP/SKA1/NEK2/CENPM/RAD51AP1/CENPN/CDK1/ERCC6L/MAD2L1/KIF18A/CDT1/BIRC5/EZH2/TTK/NCAPG/AURKB/CHEK1/CCNB1/MCM5
## GO:0000776                                                                   CENPE/NDC80/HJURP/SKA1/NEK2/CENPM/CENPN/ERCC6L/MAD2L1/KIF18A/CDT1/BIRC5/TTK/AURKB/CCNB1
##            Count
## GO:0005819    26
## GO:0000775    19
## GO:0072686    17
## GO:0000779    16
## GO:0098687    23
## GO:0000776    15
p2 <- dotplot(ego, showCategory=30) + ggtitle("dotplot for GO")
p2